Page No...1

EC42

USN	-	
	 +	_1_
~~		

NEW SCHEME

Fourth Semester B.E. Degree Examination, Dec.06 / Jan.07 Electronics and Communication Engineering

Power Electronics

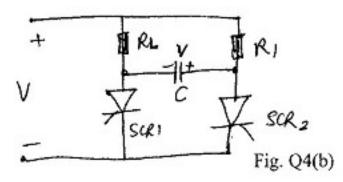
Time: 3 hrs.]

[Max. Marks:100

Note: 1. Answer any FIVE full questions.

- a. Give a list of Power Electronic circuits for different input / output requirements.
 (05 Marks)
 - b. Discuss the peripheral effects of Power Electronics equipments. (05 Marks)
 - With model and waveforms, explain how the internal capacitances of the transistor influence the switching characteristics of the transistor. (10 Marks)
- Explain the anti saturation control technique used to improve the switching speed of a power B.J.T.
 (06 Marks)
 - Discuss methods of providing isolation of gate/base circuits from power circuits.
 (06 Marks)
 - c. A transistor switch of Fig Q2 (c) has β in the range of 8 to 40. Calculate
 - The value of R_B that results in saturation with an overdrive factor of 5.
 - ii) The forced β_f and iii) The power loss in the transistor. $\begin{cases} R_B \\ V_{CE(Sat)} \\ V_{CE(Sat)}$

Fig Q2 (c)


- a. Explain the principle of operation of an SCR using two transistor model. (06 Marks)
 - b. What is the need for protection of thyristors. Explain how thyristors are protected against high $\frac{di}{dt}$ and high $\frac{dv}{dt}$. (07 Marks)
 - c. A string of series connected thyristors is to with stand a dc voltage of 16 kV. The maximum leakage current and recovery charge differences of the thyristors are 10 mA and 100 μC respectively. The derating factor for steady-state and transient voltage sharings are 20%. For a maximum steady state voltage sharing of 1 kV. Determine
 - i) The steady state voltage sharing resistance R for each thyristor and
 - The transient voltage capacitance C₁ for each thyristor. (07 Marks)

Page No

- a. What is forced commutation? Discuss the following forced commutation techniques.
 - Self commutation.
 - ii) Impulse commutation.

(14 Marks)

b. Obtain proper values of the commutating components for the circuit shown in Fig. Q4 (b). The load current to be commutated is 5 A, turn off time is 50 μsec. Supply voltage is 100 V, SCR₂ holding current is 2 mA. Derive the equation used. (06 Marks)

a. With necessary waveforms, explain the operation of a 1φ full wave controller with inductive load. Derive expressions for rms output voltage and rms output current.

(10 Marks)

- Explain why short duration gate pulses are not suitable for bidirectional ac voltage controllers with inductive loads. (03 Marks)
- c. A 1φ full wave ac voltage controller supplies a resistive load of R = 10 Ω from an input voltage Vs = 200 V, 60 Hz. The delay angles of the thyristors are equal,

$$\alpha_1 = \alpha_2 = \frac{\pi}{2}$$
. Determine

- The rms output voltage.
- ii) The input p.f and
- iii) Average current of thyristors
- iv) Rms current of thyristors.

(67 Marks)

- a. With the help of relevant waveforms, explain the working of a 1φ full converter assuming continuous current operation. Derive expressions for average and rms output voltages.
- b. With necessary waveforms explain the working of a 3φ half wave converter. Obtain expressions for average and rms output voltages. (10 Marks)
- a. Explain the principle of operation of a step-up chopper. (06 Marks)
- With the help of necessary mode equivalent circuits and waveforms, explain the operation of an impulse commutated chopper. (14 Marks)
- a. What are inverters? Explain the working of an half bridge inverter with necessary waveforms. What is the function of the feed back diodes? (10 Marks)
- Explain how the output voltage of a 1φ inverter is controlled using sinusoidal P.W.M technique. (10 Marks)

Tin

ı

2

3

4

5